Brosnan, J. T. & Brosnan, M. E. Branched-chain amino acids: enzyme and substrate regulation1, 2, 3. J. Nutr. 136, S207–S211 (2006).
Google Scholar
Neinast, M. D. et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 29, 417–429.e4 (2019).
Google Scholar
Lian, K. et al. Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice. Diabetes 64, 49–59 (2014).
Google Scholar
Neinast, M., Murashige, D. & Arany, Z. Branched chain amino acids. Annu. Rev. Physiol. 81, 139–164 (2019).
Google Scholar
Claris-Appiani, A., Assael, B. M., Tirelli, A. S., Marra, G. & Cavanna, G. Lack of glomerular hemodynamic stimulation after infusion of branched-chain amino acids. Kidney Int. 33, 91–94 (1988).
Google Scholar
Castellino, P., Levin, R., Shohat, J. & DeFronzo, R. A. Effect of specific amino acid groups on renal hemodynamics in humans. Am. J. Physiol. Renal Physiol. 258, F992–F997 (1990).
Google Scholar
Schrijvers, B. F., Rasch, R., Tilton, R. G. & Flyvbjerg, A. High protein-induced glomerular hypertrophy is vascular endothelial growth factor-dependent. Kidney Int. 61, 1600–1604 (2002).
Google Scholar
Stipanuk, M. H. Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide. J. Nutr. 150, 2494S–2505S (2020).
Google Scholar
Li, J. et al. Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms. Mutat. Res. Mutat. Res. 788, 108396 (2021).
Google Scholar
Stipanuk, M. H. & Ueki, I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J. Inherit. Metab. Dis. 34, 17–32 (2011).
Google Scholar
Chesney, R. W., Han, X. & Patters, A. B. Taurine and the renal system. J. Biomed. Sci. 17, S4 (2010).
Google Scholar
Chesney, R. W., Gusowski, N. & Dabbagh, S. Renal cortex taurine content regulates renal adaptive response to altered dietary intake of sulfur amino acids. J. Clin. Invest. 76, 2213–2221 (1985).
Google Scholar
Han, X., Patters, A. B., Jones, D. P., Zelikovic, I. & Chesney, R. W. The taurine transporter: mechanisms of regulation. Acta Physiol. 187, 61–73 (2006).
Google Scholar
Reymond, I., Bitoun, M., Levillain, O. & Tappaz, M. Regional expression and histological localization of cysteine sulfinate decarboxylase mRNA in the rat kidney. J. Histochem. Cytochem. J. Histochem. Soc. 48, 1461–1468 (2000).
Google Scholar
Holeček, M. Serine metabolism in health and disease and as a conditionally essential amino acid. Nutrients 14, 1987 (2022).
Google Scholar
Jang, C. et al. Metabolite exchange between mammalian organs quantified in pigs. Cell Metab. 30, 594–606.e3 (2019).
Google Scholar
Lowry, M., Hall, D. E., Hall, M. S. & Brosnan, J. T. Renal metabolism of amino acids in vivo: studies on serine and glycine fluxes. Am. J. Physiol. Renal Physiol. 252, F304–F309 (1987).
Google Scholar
Lowry, M., Hall, D. E. & Brosnan, J. T. Serine synthesis in rat kidney: studies with perfused kidney and cortical tubules. Am. J. Physiol. Renal Physiol. 250, F649–F658 (1986).
Google Scholar
Jois, M., Hall, D. E. & Brosnan, J. T. Serine synthesis by the rat kidney. N. Asp. Ren. Ammon. Metab. 63, 136–140 (1988).
Google Scholar
Wang, W. et al. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45, 463–477 (2013).
Google Scholar
Petrossian, T. C. & Clarke, S. G. Uncovering the human methyltransferasome. Mol. Cell. Proteom. 10, M110.000976 (2011).
Google Scholar
Pitts, R. F. & MacLeod, M. B. Synthesis of serine by the dog kidney in vivo. Am. J. Physiol. 222, 394–398 (1972).
Google Scholar
Alves, A., Bassot, A., Bulteau, A.-L., Pirola, L. & Morio, B. Glycine metabolism and its alterations in obesity and metabolic diseases. Nutrients 11, 1356 (2019).
Google Scholar
Lam, C. K. L. et al. Activation of N-methyl-D-aspartate (NMDA) receptors in the dorsal vagal complex lowers glucose production. J. Biol. Chem. 285, 21913–21921 (2010).
Google Scholar
Razak, M. A., Begum, P. S., Viswanath, B. & Rajagopal, S. Multifarious beneficial effect of nonessential amino acid, glycine: a review. Oxid. Med. Cell. Longev. 2017, 1716701 (2017).
Google Scholar
Meléndez-Hevia, E. & de Paz-Lugo, P. Branch-point stoichiometry can generate weak links in metabolism: the case of glycine biosynthesis. J. Biosci. 33, 771–780 (2008).
Google Scholar
Tizianello, A., Ferrari, G. D., Garibotto, G., Gurreri, G. & Robaudo, C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J. Clin. Invest. 65, 1162–1173 (1980).
Google Scholar
Tessari, P. et al. Phenylalanine hydroxylation across the kidney in humans rapid communication. Kidney Int. 56, 2168–2172 (1999).
Google Scholar
Møller, N., Meek, S., Bigelow, M., Andrews, J. & Nair, K. S. The kidney is an important site for in vivo phenylalanine-to-tyrosine conversion in adult humans: a metabolic role of the kidney. Proc. Natl Acad. Sci. USA 97, 1242–1246 (2000).
Google Scholar
Boirie, Y., Albright, R., Bigelow, M. & Nair, K. S. Impairment of phenylalanine conversion to tyrosine in end-stage renal disease causing tyrosine deficiency. Kidney Int. 66, 591–596 (2004).
Google Scholar
Kopple, J. D. Phenylalanine and tyrosine metabolism in chronic kidney failure. J. Nutr. 137, 1586S–1590S (2007).
Google Scholar
Hsu, C.-N. & Tain, Y.-L. Developmental programming and reprogramming of hypertension and kidney disease: impact of tryptophan metabolism. Int. J. Mol. Sci. 21, 8705 (2020).
Google Scholar
Castro-Portuguez, R. & Sutphin, G. L. Kynurenine pathway, NAD+ synthesis, and mitochondrial function: targeting tryptophan metabolism to promote longevity and healthspan. Exp. Gerontol. 132, 110841 (2020).
Google Scholar
Badawy, A. A.-B. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int. J. Tryptophan Res. 10, 1178646917691938 (2017).
Google Scholar
Tan, X. et al. Indoxyl sulfate, a valuable biomarker in chronic kidney disease and dialysis. Hemodial. Int. 21, 161–167 (2017).
Google Scholar
Duranton, F. et al. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 23, 1258 (2012).
Google Scholar
Holeček, M. Histidine in health and disease: metabolism, physiological importance, and use as a supplement. Nutrients 12, 848 (2020).
Google Scholar
Liu, W., Liu, T. & Yin, M. Beneficial effects of histidine and carnosine on ethanol-induced chronic liver injury. Food Chem. Toxicol. 46, 1503–1509 (2008).
Google Scholar
Brosnan, J. T. The 1986 Borden award lecture. The role of the kidney in amino acid metabolism and nutrition. Can. J. Physiol. Pharmacol. 65, 2355–2362 (1987).
Google Scholar
Dhanakoti, S. N., Brosnan, J. T., Herzberg, G. R. & Brosnan, M. E. Renal arginine synthesis: studies in vitro and in vivo. Am. J. Physiol. 259, E437–E442 (1990).
Google Scholar
Houdijk, A. P. et al. Glutamine-enriched enteral diet increases renal arginine production. J. Parenter. Enter. Nutr. 18, 422–426 (1994).
Google Scholar
Weiner, I. D., Mitch, W. E. & Sands, J. M. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin. J. Am. Soc. Nephrol. 10, 1444–1458 (2015).
Google Scholar
Bankir, L., Bouby, N., Trinh-Trang-Tan, M.-M., Ahloulay, M. & Promeneur, D. Direct and indirect cost of urea excretion. Kidney Int. 49, 1598–1607 (1996).
Google Scholar
Perez, G. O., Epstein, M., Rietberg, B. & Loutzenhiser, R. Metabolism of arginine by the isolated perfused rat kidney. Am. J. Physiol. 235, F376–F380 (1978).
Google Scholar
Li, Z. et al. Arginase: shedding light on the mechanisms and opportunities in cardiovascular diseases. Cell Death Discov. 8, 1–14 (2022).
Google Scholar
Pernow, J. & Jung, C. The emerging role of arginase in endothelial dysfunction in diabetes. Curr. Vasc. Pharmacol. 14, 155–162 (2016).
Google Scholar
You, H., Gao, T., Cooper, T. K., Morris, S. M. & Awad, A. S. Arginase inhibition mediates renal tissue protection in diabetic nephropathy by a nitric oxide synthase 3-dependent mechanism. Kidney Int. 84, 1189–1197 (2013).
Google Scholar
Bachmann, S. & Mundel, P. Nitric oxide in the kidney: synthesis, localization, and function. Am. J. Kidney Dis. 24, 112–129 (1994).
Google Scholar
Carlström, M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat. Rev. Nephrol. 17, 575–590 (2021).
Google Scholar
Morgan, D. M. Polyamines. An overview. Mol. Biotechnol. 11, 229–250 (1999).
Google Scholar
Kim, J. Spermidine is protective against kidney ischemia and reperfusion injury through inhibiting DNA nitration and PARP1 activation. Anat. Cell Biol. 50, 200–206 (2017).
Google Scholar
Tsikas, D. Urinary dimethylamine (DMA) and its precursor asymmetric dimethylarginine (ADMA) in clinical medicine, in the context of nitric oxide (NO) and beyond. J. Clin. Med. 9, 1843 (2020).
Google Scholar
Duranton, F. et al. Plasma and urinary amino acid metabolomic profiling in patients with different levels of kidney function. Clin. J. Am. Soc. Nephrol. 9, 37–45 (2014).
Google Scholar
Huang, J., Ladeiras, D., Yu, Y., Ming, X.-F. & Yang, Z. Detrimental effects of chronic l-arginine rich food on aging kidney. Front. Pharmacol. 11, 582155 (2021).
Google Scholar
Brosnan, J. T. & Brosnan, M. E. Glutamate: a truly functional amino acid. Amino Acids 45, 413–418 (2013).
Google Scholar
Boron, W. F. & Boulpaep, E. L. Medical Physiology. https://shop.elsevier.com/books/medical-physiology/boron/978-1-4557-4377-3 (2016).
Stumvoll, M., Perriello, G., Meyer, C. & Gerich, J. Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney Int. 55, 778–792 (1999).
Google Scholar
van de Poll, M. C. G., Soeters, P. B., Deutz, N. E. P., Fearon, K. C. H. & Dejong, C. H. C. Renal metabolism of amino acids: its role in interorgan amino acid exchange. Am. J. Clin. Nutr. 79, 185–197 (2004).
Google Scholar
Rinschen, M. M. et al. Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension. Nat. Commun. 13, 4099 (2022).
Google Scholar
Tan, Y., Chrysopoulou, M. & Rinschen, M. M. Integrative physiology of lysine metabolites. Physiol. Genomics 55, 579–586 (2023).
Google Scholar
Thelle, K., Christensen, E. I., Vorum, H., Ørskov, H. & Birn, H. Characterization of proteinuria and tubular protein uptake in a new model of oral L-lysine administration in rats. Kidney Int. 69, 1333–1340 (2006).
Google Scholar
Jozi, F. et al. L-Lysine ameliorates diabetic nephropathy in rats with streptozotocin-induced diabetes mellitus. BioMed. Res. Int. 2022, 4547312 (2022).
Google Scholar
Wang, T. J. et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J. Clin. Invest. 123, 4309–4317 (2013).
Google Scholar
McMahon, G. M. et al. Urinary metabolites along with common and rare genetic variations are associated with incident chronic kidney disease. Kidney Int. 91, 1426–1435 (2017).
Google Scholar
Nishioka, N. et al. Carnitine supplements for people with chronic kidney disease requiring dialysis. Cochrane Database Syst. Rev. 12, CD013601 (2022).
Google Scholar
Guder, W. G. & Schorn, T. Metabolic interactions between renal proline and glutamine metabolism. https://doi.org/10.1159/000420076 (1991).
Phang, J. M., Pandhare, J. & Liu, Y. The metabolism of proline as microenvironmental stress substrate. J. Nutr. 138, 2008S–2015S (2008).
Google Scholar
Pandhare, J., Donald, S. P., Cooper, S. K. & Phang, J. M. Regulation and function of proline oxidase under nutrient stress. J. Cell. Biochem. 107, 759–768 (2009).
Google Scholar
Hensgens, H. E., Meijer, A. J., Williamson, J. R., Gimpel, J. A. & Tager, J. M. Prolone metabolism in isolated rat liver cells. Biochem. J. 170, 699–707 (1978).
Google Scholar
Schwörer, S. et al. Proline biosynthesis is a vent for TGFβ‐induced mitochondrial redox stress. EMBO J. 39, e103334 (2020).
Google Scholar
Berg, R. A. & Prockop, D. J. The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem. Biophys. Res. Commun. 52, 115–120 (1973).
Google Scholar
Lowry, M., Hall, D. E. & Brosnan, J. T. Hydroxyproline metabolism by the rat kidney: distribution of renal enzymes of hydroxyproline catabolism and renal conversion of hydroxyproline to glycine and serine. Metabolism 34, 955–961 (1985).
Google Scholar
Cornec-Le Gall, E., Alam, A. & Perrone, R. D. Autosomal dominant polycystic kidney disease. Lancet Lond. Engl. 393, 919–935 (2019).
Google Scholar
Rowe, I. et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat. Med. 19, 488–493 (2013).
Google Scholar
Podrini, C. et al. Dissection of metabolic reprogramming in polycystic kidney disease reveals coordinated rewiring of bioenergetic pathways. Commun. Biol. 1, 1–14 (2018).
Google Scholar
Hwang, V. J. et al. The cpk model of recessive PKD shows glutamine dependence associated with the production of the oncometabolite 2-hydroxyglutarate. Am. J. Physiol. Renal Physiol. 309, F492–F498 (2015).
Google Scholar
Flowers, E. M. et al. Lkb1 deficiency confers glutamine dependency in polycystic kidney disease. Nat. Commun. 9, 814 (2018).
Google Scholar
Du, X. & Hu, H. The roles of 2-hydroxyglutarate. Front. Cell Dev. Biol. 9, 651317 (2021).
Google Scholar
Lomelino, C. L., Andring, J. T., McKenna, R. & Kilberg, M. S. Asparagine synthetase: function, structure, and role in disease. J. Biol. Chem. 292, 19952–19958 (2017).
Google Scholar
Yang, C. et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell 56, 414–424 (2014).
Google Scholar
Baliga, M. M. et al. Metabolic profiling in children and young adults with autosomal dominant polycystic kidney disease. Sci. Rep. 11, 6629 (2021).
Google Scholar
Yoo, H. C., Yu, Y. C., Sung, Y. & Han, J. M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 52, 1496–1516 (2020).
Google Scholar
Durán, R. V. & Hall, M. N. Glutaminolysis feeds mTORC1. Cell Cycle 11, 4107–4108 (2012).
Google Scholar
Durán, R. V. et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 47, 349–358 (2012).
Google Scholar
Trott, J. F. et al. Arginine reprogramming in ADPKD results in arginine-dependent cystogenesis. Am. J. Physiol. Renal Physiol. 315, F1855–F1868 (2018).
Google Scholar
Ramalingam, H. et al. A methionine-mettl3-N6-methyladenosine axis promotes polycystic kidney disease. Cell Metab. 33, 1234–1247.e7 (2021).
Google Scholar
Parrot, C. et al. c-Myc is a regulator of the PKD1 gene and PC1-induced pathogenesis. Hum. Mol. Genet. 28, 751–763 (2019).
Google Scholar
Takahara, T., Amemiya, Y., Sugiyama, R., Maki, M. & Shibata, H. Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes. J. Biomed. Sci. 27, 87 (2020).
Google Scholar
Maddocks, O. D. K., Labuschagne, C. F., Adams, P. D. & Vousden, K. H. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol. Cell 61, 210–221 (2016).
Google Scholar
Grant, G. A. D-3-Phosphoglycerate dehydrogenase. Front. Mol. Biosci. 5, 110 (2018).
Google Scholar
Zou, K. et al. Life span extension by glucose restriction is abrogated by methionine supplementation: cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. Sci. Adv. 6, eaba1306 (2020).
Google Scholar
Torres, J. A. et al. Ketosis ameliorates renal cyst growth in polycystic kidney disease. Cell Metab. 30, 1007–1023.e5 (2019).
Google Scholar
Oehm, S. et al. RESET-PKD: a pilot trial on short-term ketogenic interventions in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 38, 1623–1635 (2023).
Google Scholar
Cukoski, S. et al. Feasibility and impact of ketogenic dietary interventions in polycystic kidney disease: KETO-ADPKD — a randomized controlled trial. Cell Rep. Med. 4, 101283 (2023).
Google Scholar
Knol, M. G. E. et al. Higher beta-hydroxybutyrate ketone levels associated with a slower kidney function decline in ADPKD. Nephrol. Dial. Transplant. 39, 838–847 (2023).
Google Scholar
Anthony, J. C. et al. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J. Nutr. 130, 2413–2419 (2000).
Google Scholar
Yamamoto, J. et al. Branched-chain amino acids enhance cyst development in autosomal dominant polycystic kidney disease. Kidney Int. 92, 377–387 (2017).
Google Scholar
Nguyen, D. T. et al. The tryptophan-metabolizing enzyme indoleamine 2,3-dioxygenase 1 regulates polycystic kidney disease progression. JCI Insight 8, e154773 (2023).
Google Scholar
Klawitter, J. et al. Kynurenines in polycystic kidney disease. J. Nephrol. 36, 83–91 (2023).
Google Scholar
Pawlak, K., Domaniewski, T., Mysliwiec, M. & Pawlak, D. Kynurenines and oxidative status are independently associated with thrombomodulin and von Willebrand factor levels in patients with end-stage renal disease. Thromb. Res. 124, 452–457 (2009).
Google Scholar
Koye, D. N., Magliano, D. J., Nelson, R. G. & Pavkov, M. E. The global epidemiology of diabetes and kidney disease. Adv. Chronic Kidney Dis. 25, 121–132 (2018).
Google Scholar
The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).
Xie, X. et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet Lond. Engl. 387, 435–443 (2016).
Google Scholar
de Vries, A. P. J. et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2, 417–426 (2014).
Google Scholar
DeFronzo, R. A., Reeves, W. B. & Awad, A. S. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat. Rev. Nephrol. 17, 319–334 (2021).
Google Scholar
Fotheringham, A. K., Gallo, L. A., Borg, D. J. & Forbes, J. M. Advanced glycation end products (AGEs) and chronic kidney disease: does the modern diet AGE the kidney? Nutrients 14, 2675 (2022).
Google Scholar
Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).
Google Scholar
Palmer, N. D. et al. Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study. J. Clin. Endocrinol. Metab. 100, E463–E468 (2015).
Google Scholar
Tillin, T. et al. Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study. Diabetologia 58, 968–979 (2015).
Google Scholar
Lotta, L. A. et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a mendelian randomisation analysis. PLoS Med. 13, e1002179 (2016).
Google Scholar
Jäger, S. et al. Mendelian randomization study on amino acid metabolism suggests tyrosine as causal trait for type 2 diabetes. Nutrients 12, 3890 (2020).
Google Scholar
Mi, N. et al. Branched-chain amino acids attenuate early kidney injury in diabetic rats. Biochem. Biophys. Res. Commun. 466, 240–246 (2015).
Google Scholar
Tofte, N. et al. Metabolomic assessment reveals alteration in polyols and branched chain amino acids associated with present and future renal impairment in a discovery cohort of 637 persons with type 1 diabetes. Front. Endocrinol. 10, 818 (2019).
Google Scholar
Welsh, P. et al. Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: results from the ADVANCE trial. Diabetologia 61, 1581–1591 (2018).
Google Scholar
Zhou, C. et al. Metabolomic profiling of amino acids in human plasma distinguishes diabetic kidney disease from type 2 diabetes mellitus. Front. Med. 8, 765873 (2021).
Google Scholar
Zhu, H. et al. Impaired amino acid metabolism and its correlation with diabetic kidney disease progression in type 2 diabetes mellitus. Nutrients 14, 3345 (2022).
Google Scholar
Majumder, S. et al. Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease. J. Clin. Invest. 128, 483–499 (2018).
Google Scholar
Komers, R. et al. Epigenetic changes in renal genes dysregulated in mouse and rat models of type 1 diabetes. Lab. Investig. J. Tech. Methods Pathol. 93, 543–552 (2013).
Google Scholar
Chen, H. et al. Renal UTX-PHGDH-serine axis regulates metabolic disorders in the kidney and liver. Nat. Commun. 13, 3835 (2022).
Google Scholar
Handzlik, M. K. et al. Insulin-regulated serine and lipid metabolism drive peripheral neuropathy. Nature 614, 118–124 (2023).
Google Scholar
Santos-Silva, J. C. et al. Taurine supplementation ameliorates glucose homeostasis, prevents insulin and glucagon hypersecretion, and controls β, α, and δ-cell masses in genetic obese mice. Amino Acids 47, 1533–1548 (2015).
Google Scholar
Zhang, R. et al. Taurine supplementation reverses diabetes-induced podocytes injury via modulation of the CSE/TRPC6 axis and improvement of mitochondrial function. Nephron 144, 84–95 (2020).
Google Scholar
Singh, P. et al. Taurine deficiency as a driver of aging. Science 380, eabn9257 (2023).
Google Scholar
Branco, R. C. S. et al. Long-term taurine supplementation leads to enhanced hepatic steatosis, renal dysfunction and hyperglycemia in mice fed on a high-fat diet. Adv. Exp. Med. Biol. 803, 339–351 (2015).
Google Scholar
Tao, X., Zhang, Z., Yang, Z. & Rao, B. The effects of taurine supplementation on diabetes mellitus in humans: a systematic review and meta-analysis. Food Chem. Mol. Sci. 4, 100106 (2022).
Google Scholar
Kidney Disease: Improving Global Outcomes (KDIGO), Acute Kidney Injury Work Group KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2, 6 (2012).
Ronco, C., Bellomo, R. & Kellum, J. A. Acute kidney injury. Lancet 394, 1949–1964 (2019).
Google Scholar
Price, S. R. et al. Mechanisms contributing to muscle-wasting in acute uremia: activation of amino acid catabolism. J. Am. Soc. Nephrol. 9, 439 (1998).
Google Scholar
Sieckmann, T. et al. Strikingly conserved gene expression changes of polyamine regulating enzymes among various forms of acute and chronic kidney injury. Kidney Int. 104, 90–107 (2023).
Google Scholar
Boudonck, K. J. et al. Discovery of metabolomics biomarkers for early detection of nephrotoxicity. Toxicol. Pathol. 37, 280–292 (2009).
Google Scholar
Oken, D. E., Sprinkel, F. M., Kirschbaum, B. B. & Landwehr, D. M. Amino acid therapy in the treatment of experimental acute renal failure in the rat. Kidney Int. 17, 14–23 (1980).
Google Scholar
Abel, R. M. et al. Improved survival from acute renal failure after treatment with intravenous essential L-amino acids and glucose. N. Engl. J. Med. 288, 695–699 (1973).
Google Scholar
Singer, P. High-dose amino acid infusion preserves diuresis and improves nitrogen balance in non-oliguric acute renal failure. Wien. Klin. Wochenschr. 119, 218–222 (2007).
Google Scholar
Landoni, G. et al. A randomized trial of intravenous amino acids for kidney protection. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2403769 (2024).
Mitchell, J. R. et al. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice. Aging Cell 9, 40–53 (2010).
Google Scholar
Koehler, F. C. et al. A systematic analysis of diet-induced nephroprotection reveals overlapping changes in cysteine catabolism. Transl. Res. J. Lab. Clin. Med. 244, 32–46 (2022).
Google Scholar
Späth, M. R. et al. Organ protection by caloric restriction depends on activation of the de novo NAD+ synthesis pathway. J. Am. Soc. Nephrol. 34, 772–792 (2023).
Google Scholar
Grundmann, F. et al. Preoperative short-term calorie restriction for prevention of acute kidney injury after cardiac surgery: a randomized, controlled, open-label, pilot trial. J. Am. Heart Assoc. 7, e008181 (2018).
Google Scholar
Grundmann, F. et al. Dietary restriction for prevention of contrast-induced acute kidney injury in patients undergoing percutaneous coronary angiography: a randomized controlled trial. Sci. Rep. 10, 5202 (2020).
Google Scholar
Robertson, L. T. et al. Protein and calorie restriction contribute additively to protection from renal ischemia reperfusion injury partly via leptin reduction in male mice. J. Nutr. 145, 1717–1727 (2015).
Google Scholar
Hine, C. et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160, 132–144 (2015).
Google Scholar
Osterholt, T. et al. Preoperative short‐term restriction of sulfur‐containing amino acid intake for prevention of acute kidney injury after cardiac surgery: a randomized, controlled, double‐blind, translational trial. J. Am. Heart Assoc. 11, e025229 (2022).
Google Scholar
Piret, S. E. et al. Krüppel-like factor 6–mediated loss of BCAA catabolism contributes to kidney injury in mice and humans. Proc. Natl Acad. Sci. USA 118, e2024414118 (2021).
Google Scholar
Nagata, S. et al. Regular exercise and branched-chain amino acids prevent ischemic acute kidney injury-related muscle wasting in mice. Physiol. Rep. 8, e14557 (2020).
Google Scholar
Navarro Garrido, A. et al. Aristolochic acid-induced nephropathy is attenuated in mice lacking the neutral amino acid transporter B0AT1 (Slc6a19). Am. J. Physiol. Renal Physiol. 323, F455–F467 (2022).
Google Scholar
Nakade, Y. et al. Gut microbiota-derived D-serine protects against acute kidney injury. JCI Insight 3, e97957 (2018).
Google Scholar
Sasabe, J. et al. Interplay between microbial D-amino acids and host D-amino acid oxidase modifies murine mucosal defence and gut microbiota. Nat. Microbiol. 1, 1–7 (2016).
Google Scholar
Meyer, T., Ichikawa, I., Zatz, R. & Brenner, B. The renal hemodynamic response to amino acid infusion in the rat. Trans. Assoc. Am. Physicians 96, 76–83 (1983).
Google Scholar
Seney, F. D. Jr, Persson, E. G. & Wright, F. S. Modification of tubuloglomerular feedback signal by dietary protein. Am. J. Physiol. Renal Physiol. 252, F83–F90 (1987).
Google Scholar
Yao, B., Xu, J., Qi, Z., Harris, R. C. & Zhang, M.-Z. Role of renal cortical cyclooxygenase-2 expression in hyperfiltration in rats with high-protein intake. Am. J. Physiol. Renal Physiol. 291, F368–F374 (2006).
Google Scholar
Sekine, Y. et al. Amino acid transporter LAT3 is required for podocyte development and function. J. Am. Soc. Nephrol. 20, 1586–1596 (2009).
Google Scholar
Kurayama, R. et al. Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis. Lab. Invest. 91, 992–1006 (2011).
Google Scholar
Tian, Z. & Liang, M. Renal metabolism and hypertension. Nat. Commun. 12, 963 (2021).
Google Scholar
Cheng, Y. et al. Urinary metabolites associated with blood pressure on a low- or high-sodium diet. Theranostics 8, 1468–1480 (2018).
Google Scholar
Rinschen, M. M. et al. Metabolic rewiring of the hypertensive kidney. Sci. Signal. 12, (2019).
Shah, V. O. et al. Plasma metabolomic profiles in different stages of CKD. Clin. J. Am. Soc. Nephrol. 8, 363–370 (2013).
Google Scholar
Jia, Y. et al. Long-term high intake of whole proteins results in renal damage in pigs. J. Nutr. 140, 1646–1652 (2010).
Google Scholar
Obeid, W., Hiremath, S. & Topf, J. M. Protein restriction for CKD: time to move on. Kidney360 3, 1611–1615 (2022).
Google Scholar
Koppe, L., Fouque, D. & Soulage, C. O. The role of gut microbiota and diet on uremic retention solutes production in the context of chronic kidney disease. Toxins 10, 155 (2018).
Google Scholar
Vanholder, R., Schepers, E., Pletinck, A., Nagler, E. V. & Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J. Am. Soc. Nephrol. 25, 1897 (2014).
Google Scholar
Barreto, F. C. et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 4, 1551 (2009).
Google Scholar
Yang, Y., Mihajlovic, M., Janssen, M. J. & Masereeuw, R. The uremic toxin indoxyl sulfate accelerates senescence in kidney proximal tubule cells. Toxins 15, 242 (2023).
Google Scholar
Sun, C.-Y., Chang, S.-C. & Wu, M.-S. Uremic toxins induce kidney fibrosis by activating intrarenal renin–angiotensin–aldosterone system associated epithelial-to-mesenchymal transition. PLoS One 7, e34026 (2012).
Google Scholar
Owada, S. et al. Indoxyl sulfate reduces superoxide scavenging activity in the kidneys of normal and uremic rats. Am. J. Nephrol. 28, 446–454 (2008).
Google Scholar
Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).
Google Scholar
Dou, L. et al. Aryl hydrocarbon receptor is activated in patients and mice with chronic kidney disease. Kidney Int. 93, 986–999 (2018).
Google Scholar
Kolachalama, V. B. et al. Uremic solute-aryl hydrocarbon receptor-tissue factor axis associates with thrombosis after vascular injury in humans. J. Am. Soc. Nephrol. 29, 1063–1072 (2018).
Google Scholar
Patel, K. P., Luo, F. J.-G., Plummer, N. S., Hostetter, T. H. & Meyer, T. W. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin. J. Am. Soc. Nephrol. 7, 982–988 (2012).
Google Scholar
Cheng, Y. et al. The relationship between blood metabolites of the tryptophan pathway and kidney function: a bidirectional Mendelian randomization analysis. Sci. Rep. 10, 12675 (2020).
Google Scholar
Fernstrom, J. D. & Fernstrom, M. H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 137, 1539S–1547S (2007).
Google Scholar
Meijers, B. K. I. et al. p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin. J. Am. Soc. Nephrol. 5, 1182–1189 (2010).
Google Scholar
Fernandes, A. L. F. et al. Dietary intake of tyrosine and phenylalanine, and p-cresyl sulfate plasma levels in non-dialyzed patients with chronic kidney disease. J. Bras. Nefrol. 42, 307–314 (2020).
Google Scholar
Barba, C. et al. A low aromatic amino-acid diet improves renal function and prevent kidney fibrosis in mice with chronic kidney disease. Sci. Rep. 11, 19184 (2021).
Google Scholar
Billing, A. M. et al. Metabolic communication by SGLT2 inhibition. Circulation 149, 860–884 (2023).
Google Scholar
Pillai, S. M. et al. Differential impact of dietary branched chain and aromatic amino acids on chronic kidney disease progression in rats. Front. Physiol. 10, 1460 (2019).
Google Scholar
Newgard, C. B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 15, 606–614 (2012).
Google Scholar
Wilcken, D. E. & Wilcken, B. The pathogenesis of coronary artery disease. A possible role for methionine metabolism. J. Clin. Invest. 57, 1079–1082 (1976).
Google Scholar
Jamison, R. L. et al. Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease a randomized controlled trial. JAMA 298, 1163–1170 (2007).
Google Scholar
Martí-Carvajal, A. J., Solà, I., Lathyris, D. & Dayer, M. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst. Rev. 8, CD006612 (2017).
Google Scholar
Xiao, Y. et al. Role of S-adenosylhomocysteine in cardiovascular disease and its potential epigenetic mechanism. Int. J. Biochem. Cell Biol. 67, 158–166 (2015).
Google Scholar
Green, T. J. et al. Homocysteine-lowering vitamins do not lower plasma S-adenosylhomocysteine in older people with elevated homocysteine concentrations. Br. J. Nutr. 103, 1629–1634 (2010).
Google Scholar
Stam, F. et al. Homocysteine clearance and methylation flux rates in health and end-stage renal disease: association with S-adenosylhomocysteine. Am. J. Physiol. Renal Physiol. 287, F215–F223 (2004).
Google Scholar
Ingrosso, D. et al. Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361, 1693–1699 (2003).
Google Scholar
Garibotto, G. et al. The kidney is the major site of S-adenosylhomocysteine disposal in humans. Kidney Int. 76, 293–296 (2009).
Google Scholar
Schievink, B. et al. Early renin-angiotensin system intervention is more beneficial than late intervention in delaying end-stage renal disease in patients with type 2 diabetes. Diabetes Obes. Metab. 18, 64–71 (2016).
Google Scholar
Hesaka, A. et al. D-Serine reflects kidney function and diseases. Sci. Rep. 9, 5104 (2019).
Google Scholar
Lee, H., Jang, H. B., Yoo, M.-G., Park, S. I. & Lee, H.-J. Amino acid metabolites associated with chronic kidney disease: an eight-year follow-up Korean epidemiology study. Biomedicines 8, 222 (2020).
Google Scholar
Dahabiyeh, L. A. et al. Metabolomics profiling distinctively identified end-stage renal disease patients from chronic kidney disease patients. Sci. Rep. 13, 6161 (2023).
Google Scholar
Rhee, E. P. et al. A combined epidemiologic and metabolomic approach improves CKD prediction. J. Am. Soc. Nephrol. 24, 1330–1338 (2013).
Google Scholar
Bello, A. K. et al. Epidemiology of haemodialysis outcomes. Nat. Rev. Nephrol. 18, 378–395 (2022).
Google Scholar
Post, A. et al. Amino acid homeostasis and fatigue in chronic hemodialysis patients. Nutrients 14, 2810 (2022).
Google Scholar
Ikizler, T. A. et al. Hemodialysis stimulates muscle and whole body protein loss and alters substrate oxidation. Am. J. Physiol. Endocrinol. Metab. 282, E107–E116 (2002).
Google Scholar
Hendriks, F. K. et al. Branched-chain ketoacid co-ingestion with protein lowers amino acid oxidation during hemodialysis: a randomized controlled cross-over trial. Clin. Nutr. 42, 1436–1444 (2023).
Google Scholar
Koppe, L., Cassani de Oliveira, M. & Fouque, D. Ketoacid analogues supplementation in chronic kidney disease and future perspectives. Nutrients 11, 2071 (2019).
Google Scholar
Thiele, I. et al. Personalized whole-body models integrate metabolism, physiology, and the gut microbiome. Mol. Syst. Biol. 16, e8982 (2020).
Google Scholar
Harris, A. N. & Weiner, I. D. Sex differences in renal ammonia metabolism. Am. J. Physiol. Renal Physiol. 320, F55–F60 (2021).
Google Scholar
Li, Q., McDonough, A. A., Layton, H. E. & Layton, A. T. Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis. Am. J. Physiol. Renal Physiol. 315, F692–F700 (2018).
Google Scholar
Yahyaoui, R. & Pérez-Frías, J. Amino acid transport defects in human inherited metabolic disorders. Int. J. Mol. Sci. 21, 119 (2019).
Google Scholar
McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University. Online Mendelian Inheritance in Man, OMIM https://omim.org/ (2023).
Bröer, S. & Bröer, A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 474, 1935–1963 (2017).
Google Scholar
Camargo, S. M., Poncet, N. & Verrey, F. in Studies of Epithelial Transporters and Ion Channels: Ion Channels and Transporters of Epithelia in Health and Disease Vol. 3 (eds Hamilton, K. L. & Devor, D. C.) 255–323 (Springer International Publishing, 2020).
Hediger, Matthias. A. SLCtables. http://slc.bioparadigms.org/ (2019).
Grewer, C., Gameiro, A. & Rauen, T. SLC1 glutamate transporters. Pflugers Arch. 466, 3–24 (2014).
Google Scholar
Scopelliti, A. J., Heinzelmann, G., Kuyucak, S., Ryan, R. M. & Vandenberg, R. J. Na+ interactions with the neutral amino acid transporter ASCT1. J. Biol. Chem. 289, 17468–17479 (2014).
Google Scholar
Zerangue, N. & Kavanaugh, M. P. ASCT-1 is a neutral amino acid exchanger with chloride channel activity. J. Biol. Chem. 271, 27991–27994 (1996).
Google Scholar
Bhutia, Y. D. & Ganapathy, V. Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim. Biophys. Acta 1863, 2531–2539 (2016).
Google Scholar
Fotiadis, D., Kanai, Y. & Palacín, M. The SLC3 and SLC7 families of amino acid transporters. Mol. Asp. Med. 34, 139–158 (2013).
Google Scholar
Rasola, A., Galietta, L. J. V., Barone, V., Romeo, G. & Bagnasco, S. Molecular cloning and functional characterization of a GABA/betaine transporter from human kidney. FEBS Lett. 373, 229–233 (1995).
Google Scholar
Bröer, S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 88, 249–286 (2008).
Google Scholar
Bröer, A. et al. The orphan transporter v7-3 (slc6a15) is a Na+-dependent neutral amino acid transporter (B0AT2). Biochem. J. 393, 421–430 (2006).
Google Scholar
Bröer, S. & Gether, U. The solute carrier 6 family of transporters. Br. J. Pharmacol. 167, 256–278 (2012).
Google Scholar
Nagamori, S. et al. Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1. Proc. Natl Acad. Sci. USA 113, 775–780 (2016).
Google Scholar
Thwaites, D. T. & Anderson, C. M. The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br. J. Pharmacol. 164, 1802–1816 (2011).
Google Scholar
Roshanbin, S. et al. Histological characterization of orphan transporter MCT14 (SLC16A14) shows abundant expression in mouse CNS and kidney. BMC Neurosci. 17, 43 (2016).
Google Scholar
Ramadan, T. et al. Basolateral aromatic amino acid transporter TAT1 (Slc16a10) functions as an efflux pathway. J. Cell. Physiol. 206, 771–779 (2006).
Google Scholar
Zhou, Y. et al. Deletion of the γ-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents. J. Biol. Chem. 287, 35733–35746 (2012).
Google Scholar
Pillai, S. M. & Meredith, D. SLC36A4 (hPAT4) is a high affinity amino acid transporter when expressed in xenopus laevis oocytes. J. Biol. Chem. 286, 2455–2460 (2011).
Google Scholar
Bodoy, S., Fotiadis, D., Stoeger, C., Kanai, Y. & Palacín, M. The small SLC43 family: facilitator system l amino acid transporters and the orphan EEG1. Mol. Asp. Med. 34, 638–645 (2013).
Google Scholar